国产在线观看高清视频_精品久久久久久中文字幕_日韩电影大全网站_午夜视频在线免费

咨詢熱線

15811022840

當(dāng)前位置:首頁   >  產(chǎn)品中心  >    >  植物  >  PSK植物脅迫測(cè)量套件

植物脅迫測(cè)量套件

簡(jiǎn)要描述:Y(II)或ΔF/Fm’ 或 (Fm’ – Fs )/Fm’) 是經(jīng)受時(shí)間考驗(yàn)的光適應(yīng)測(cè)量參數(shù),比Fv/Fm對(duì)更多類型的植物脅迫更加敏感。已有的大量證據(jù)表明Fv/Fm對(duì)許多種植物脅迫和健康植物的光系統(tǒng)II的測(cè)量十分出色,而Y(II)或光量子產(chǎn)額則可測(cè)量實(shí)際光照下光適應(yīng)環(huán)境和生理狀況的光系統(tǒng)II的效率。

  • 產(chǎn)品型號(hào):PSK
  • 廠商性質(zhì):生產(chǎn)廠家
  • 更新時(shí)間:2025-11-14
  • 訪  問  量:1272

詳細(xì)介紹

  應(yīng)用
 
  Y(II)或ΔF/Fm’ 或 (Fm’ – Fs )/Fm’) 是經(jīng)受時(shí)間考驗(yàn)的光適應(yīng)測(cè)量參數(shù),比Fv/Fm對(duì)更多類型的植物脅迫更加敏感。已有的大量證據(jù)表明Fv/Fm對(duì)許多種植物脅迫和健康植物的光系統(tǒng)II的測(cè)量十分出色,而Y(II)或光量子產(chǎn)額則可測(cè)量實(shí)際光照下光適應(yīng)環(huán)境和生理狀況的光系統(tǒng)II的效率。
 
1.jpg
        原理
 
  采用調(diào)制飽和脈沖原理,測(cè)量植物的葉綠素?zé)晒猓瑴y(cè)量參數(shù)包括植物的光量子產(chǎn)額Y(II)及相對(duì)電子傳遞速率ETR,最大光化學(xué)效率Fv/Fm,同時(shí)還可測(cè)量PAR、葉溫、相對(duì)濕度和葉片吸光率等環(huán)境參數(shù)。
 
  特點(diǎn)
 
  葉片吸光率測(cè)量:提供葉片吸收測(cè)量及隨環(huán)境變化導(dǎo)致的葉片吸收變化。根據(jù)Eichelman (2004) 葉片吸收在健康植物的變化范圍在0.7~0.9 之間。因此,為獲得準(zhǔn)確的ETR或“J”,Y(II)測(cè)量?jī)x提供了一個(gè)可靠的測(cè)量方法,
 
  Fv/Fm測(cè)量單元:用于暗適應(yīng)測(cè)量。
 
1.jpg
  先進(jìn)的PAR葉夾:采用底部葉夾打開裝置,防止測(cè)量時(shí)誤操作打開葉夾。對(duì)傳感器進(jìn)行余弦校正,確保葉片相對(duì)測(cè)量光的角度不變。
 
1.jpg
  Fm’校正:對(duì)于具有高光照強(qiáng)度歷史的植物,*關(guān)閉光反應(yīng)中心是一個(gè)問題,Y(II)測(cè)量?jī)x使用Loriaux &Genty 2013的方法進(jìn)行Fm’ 校正,確保可以測(cè)得準(zhǔn)確的Fm’ 。
 
  自動(dòng)調(diào)制光設(shè)定:快速準(zhǔn)確自動(dòng)的調(diào)整合適的調(diào)制光強(qiáng),避免人工操作的誤差。
 
  先進(jìn)算法避免飽和脈沖NPQ:采用25ms內(nèi)8點(diǎn)的平均值確定Fm、Fm’、Fo、Fs,消除飽和脈沖NPQ的影響和電子噪音。
 
  更精確的葉溫測(cè)量:采用非接觸式紅外測(cè)量,測(cè)量精度可達(dá)±0.5℃。
 
  直接測(cè)量相對(duì)濕度:含有測(cè)量氣體交換使用的固態(tài)傳感器,可測(cè)量相對(duì)濕度。
 
  降低葉片遮擋的設(shè)計(jì):傾斜的角度減少對(duì)葉片的遮擋,可以測(cè)量擬南芥等小葉。
 
  系統(tǒng)組成
 
1.jpg
標(biāo)配:
  Y(II)光量子產(chǎn)額測(cè)量?jī)x,F(xiàn)v/Fm測(cè)量?jī)x及10個(gè)暗適應(yīng)葉夾,2個(gè)電池,2個(gè)充電器,一個(gè)便攜箱,文件U盤。
 
  技術(shù)指標(biāo)
 
  測(cè)量參數(shù)
 
  Y(II)或ΔF/Fm‘、ETR、PAR、Tleaf、相對(duì)濕度、Fms或Fm’、Fs、α(葉片吸收率)、FV/FM、FV/FO,F(xiàn)O, FM, FV。
 
  監(jiān)測(cè)模式:允許長(zhǎng)時(shí)間監(jiān)測(cè)
 
  技術(shù)參數(shù)
 
  Y(II): 光適應(yīng)測(cè)量, 穩(wěn)態(tài)光合作用下的環(huán)境光
 
  光源
 
  飽和脈沖: LED白光源,使用PAR葉夾時(shí)可達(dá)7000μmols
 
  調(diào)制光:紅光,LED 660nm,具有690nm窄通過濾器。
 
  光化光源:環(huán)境光
 
  檢測(cè)方法:脈沖調(diào)制法
 
  PAR:測(cè)量400-700nm,余弦校正 ±2umols
 
  Fv/Fm:暗適應(yīng)測(cè)量
 
  光源:LED紅光飽和光閃,可達(dá)6000umols;
 
  調(diào)制光:660nmLED 紅光,690nm濾波器
 
  調(diào)制光可以根據(jù)實(shí)際測(cè)量自動(dòng)調(diào)節(jié)到合適的強(qiáng)度,減少手動(dòng)調(diào)節(jié)誤差,
 
  相對(duì)濕度:0%~100%,±2%。
 
  檢測(cè)器&過濾器:具有700~750nm帶通過濾的PIN光電二極管
 
  可選配三腳架。
 
  顯示:132 X 30 pixel 液晶顯示屏
 
  取樣速率:1~10000點(diǎn)/秒自動(dòng)切換。
 
  測(cè)量時(shí)間:最短3s或也可設(shè)置長(zhǎng)期監(jiān)測(cè)模式
 
  存儲(chǔ)空間:2GB
 
  輸出:USB下載數(shù)據(jù),用Excel查看,無需安裝其他專用軟件
 
  供電:USB鋰離子電池(普通充電寶),可用8小時(shí)
 
  尺寸:便攜箱尺寸為14”x 11”x 6”,儀器為9’’長(zhǎng)
 
  質(zhì)量:Y(II) 測(cè)量?jī)x0.45 kg
 
  Fv/Fm測(cè)量?jī)x0.36 kg.
 
  加便攜箱和附件總重1.95 kg.
 
  工作溫度:0℃ ~ 50℃
 
  產(chǎn)地
 
  美國(guó)
 
  文獻(xiàn)
 
  Adams & Demming-Adams 2004 – Chlorophyll Fluorescence as a tool to Monitor Plant Response to the Environment. William W. Adams III and Barbara Demmig-Adams, From Chapter 22, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, pages 598 -599
 
  Adams WW III, Demmig-Adams B. (1994) Carotenoid composition and down regulation of Photosystem II in three conifer species during the winter. Physiol Plant 92: 451-458
 
  Ball MC. (1994) The role of photoinhibition during seedling establishment at low temperatures. In: Baker NR. And Bowyer JR. (eds) Photoinhibition of Photosynthesis. From Molecular Mechanisms to the Field, pp365-3376 Bios Scientific Publishers, Oxford
 
  Ball MC., Butterworth JA., Roden JS., Christian R., Egerton JJG., (1995) Applications of chlorophyll fluorescence to forest ecology. Aust. J. Plant Physiology 22: 311-319
 
  Baker N.R, Rosenquist E. (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities, Bukhov & Carpentier 2004 – Effects of Water Stress on the Photosynthetic Efficiency of Plants, Bukhov NG., & Robert Carpentier, From Chapter 24, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George
 
  Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, page 627-628 Burke J. (2007) Evaluation of Source Leaf Responses to Water-Deficit Stresses in Cotton Using a Novel Stress Bioassay, Plant Physiology, Jan. 2007, Vol 143, pp108-121
 
  Burke J., Franks C.D. Burow G., Xin Z. (2010) Selection system for the Stay-Green Drought Tolerance Trait in Sorghum Germplasm, Agronomy Journal 102:1118-1122 May 2010
 
  Cavender-Bares J. & Fakhri A. Bazzaz 2004 – “From Leaves to Ecosystem: Using Chlorophyll Fluorescence to Assess Photosynthesis and Plant Function in Ecological Studies”. Jeannine Cavender Bares, Fakhri A. Bazzaz, From Chapter 29, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, page 746-747 ETR Drought stress and npq
 
  Cazzaniga S, Osto L.D., Kong S-G., Wada M., Bassi R., (2013) “Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photo oxidative stress in Arabidopsis”, The Plant Journal, Volume 76, Issue 4, pages568–579, November 2013 DOI: 10.1111/tpj.12314
 
  Cheng L., Fuchigami L., Breen P., (2001) “The relationship between photosystem II efficiency and quantum yield for CO2 assimilation is not affected by nitrogen content in apple leaves.”
 
  Adams WW III, Demmig-Adams B., Vernhoeven AS., and Barker DH., (1995) Photoinhibition during winter stress – Involvement of sustained xanthophyll cycle-dependent energy-dissipation. Aust J. Plant Physiol 22: 261-276 Journal of Experimental Botany, 55(403):1607-1621
 
  Journal of Experimental Botany, 52(362):1865-1872Crafts-Brandner S. J., Law R.D. (2000) Effects of heat stress on the inhibition and recovery of ribulase-1, 5- biphsphate carboxylase/ oxygenase activation state. Planta (2000) 212: 67-74
 
  all’Osto L, Cazzaniga S, Wada M, Bassi R. (2014) On the origin of a slowly reversible fluorescence decay component in the Arabidopsis npq4 mutant. Phil. Trans. R. Soc. B 369: 20130221.htt://dx.doi.org/10.1098/rstb.2013.0221
 
  da Silva J. A. & Arrabaca M.C. (2008).Physiologia Plantarum Volume 121 Issue 3, Pages 409 – 420 2008
 
  Eichelman H., Oja V., Rasulov B., Padu E., Bichele I., Pettai H., Niinemets O., Laisk A. (2004) Development of Leaf Photosynthetic Parameters in Betual pendula Roth Leaves: Correlation with Photosystem I Density, Plant Biology 6 (2004):307-318
 
  Eyodogan F., Oz M. T. (2007) Effect of salinity on antioxidant responses of chickpea seedlings. Acta Physiol Plant (2007) 29:485-493
 
  Flexas 1999 – “Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines”J. FLEXAS, J. M. ESCALONA & H. MEDRANO Plant, Cell & Environment Volume 22 Issue 1 Page 39-48, January 1999
 
  Flexas 2000 – “Steady-State and Maximum Chlorophyll Fluorescence Responses to Water Stress In Grape Vine Leaves: A New Remote Sensing System”, J. Flexas, MJ Briantais, Z Cerovic, H Medrano, I Moya, Remote Sensing Environment 73:283-270 Physiologia Plantarum, Volume 114, Number 2, February 2002 , pp. 231-240(10)
 
  Gonias E. D. Oosterhuis D.M., Bibi A.C. & Brown R.S. (2003) YIELD, GROWTH AND PHYSIOLOGY OF TRIMAX TM TREATED COTTON, Summaries of Arkansas Cotton Research 2003
 
  Hendrickson L., Furbank R., & Chow (2004) A simple alternative approach to assessing the fate of absorbed Light energy using chlorophyll fluorescence. Photosynthesis Research 82: 73-81
 
  Kramer D. M., Johnson G., Kiirats O., Edwards G. (2004) New fluorescence parameters for determination of QA redox state and excitation energy fluxes. Photosynthesis Research 79: 209-218
 
  Krause G.H., Weis E. (1984) Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. 5, 139-157.
 
  Krupa Z., Oquist G., and Huner N., (1993) The effects of cadmium on photosynthesis of Phaseolus vulgaris – a fluorescence analysis. Physiol Plant 88, 626-630
 
  D Edwards GE and Baker NR (1993) Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynth Res 37: 89–102
 
  Laisk A and Loreto F (1996) Determining photosynthetic parameters from leaf CO2 exchange and chlorophyll fluorescence. Ribulose-1,5-bisphosphate carboxylase / oxygenase specificity factor, dark respiration in the light, excitation distribution between photosystems, alternative electron transport rate, and mesophyll diffusion resistance. Plant Physiol 110: 903–912
 
  Photosynthesis in the water-stressed C grass is mainly limited by stomata with both rapidly and slowly imposed water deficits. Flexas (2002) Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C plants Flexas J., Escalona J. M., Evain S., Gulías J., Moya I., Charles Barry Osmond C.B., and Medrano H. 4 Setaria sphacelata
 
  Earl H., Said Ennahli S., (2004) Estimating photosynthetic electron transport via chlorophyll fluorometry without Photosystem II light saturation. Photosynthesis Research 82: 177186, 2004.Laisk A., Oja V, Eichelmanna H., Luca Dall'Osto L. (2014) Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1, Biochimica et Biophysica Acta 1837 (2014) 315–325
 
  Loriaux S.D., R.A Burns,Welles J.M., McDermitt D.K. Genty B. (2006) “Determination of Maximal Chlorophyll Fluorescence Using A Multiphase Single Flash of Sub-Saturating Intensity”. Abstract # P13011 August 1996.
 
  American Society of Plant Biologists Annual Meetings, Boston MA LORIAUX S.D, AVENSON T.J., WELLES J.M., MCDERMITT D.K., ECKLES R. D., RIENSCHE B. & GENTY B. (2013) Closing in on maximum yield of chlorophyll fluorescence using a single multiphase flash of sub-saturating intensity Plant, Cell and Environment (2013) 36, 1755–1770 doi: 10.1111/pce.12115
 
  Maai E., Shimada S., Yamada M.,, Sugiyama T., Miyake H., and Taniguchi M., (2011) The avoidance and aggregative movements of mesophyll chloroplasts in C4 monocots in response to blue light and abscisic acid Journal of Experimental Botany, Vol. 62, No. 9, pp. 3213–3221, 2011, doi:10.1093/jxb/err008 Advance Access publication 21 February, 2011
 
  Moradi F. and Ismail A. (2007) Responses of Photosynthesis, Chlorophyll Fluorescence and ROS-Scavenging Systems to Salt Stress During Seedling and Reproductive Stages in Rice Annals of Botany 99(6):1161-1173
 
  Nedbal L. Whitmarsh J. (2004) Chlorophyll Fluorescence Imaging of Leaves and Fruits From Chapter 14, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, TheNetherlands, page 389 -407
 
  Netondo G., Onyango J., and Beck E., (2004) Sorghum and Salinity I. Response of Growth,Water Relations, and Ion Accumulation to NaCl Salinity, Crop Science 44:797-805
 
  Siffel P., & Braunova Z., (1999) Release and aggregation of the light-harvesting complex in intact leaves subjected to strong CO2 deficit. Photosynthesis Research 61: 217-226
 
  Strasser R.J, Tsimilli-Michael M., and Srivastava A. (2004) - Analysis of Chlorophyll a Fluorescence Transient. From Chapter 12, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, page 340 Tripathy BC, Bhatia B., Mohanty P., (1981) Inactivation of chloroplast photosynthetic electron transport activity by Ni ++. Biochim Biophys Acta 638:217-224
 
  Vredenberg W.,  Kay J. and Russotti R. (2013) The instrumental implementation of a routine for quantitative analysis of photochemical-induced variable chlorophyll fluorescence in leaves: Properties and prospects. ISPR conference in St. Louis, Poster mail: wim.vredenberg@wur.nl mail: ?iv ák M., Bresti M., Olšovská K., Slamka P.(2008) Performance index as a sensitive indicator of water stress in PLANT SOIL ENVIRON., , 2008 (4): 133–139
 
  Oquist G., and Huner N., (1991) Effects of Cold acclimation on the susceptibility of photosynthesis to photoinhibition in Scots pine and in winter and spring serials: A fluorescence analysis. Functional Ecology 5: 91-100
 

產(chǎn)品咨詢

留言框

  • 產(chǎn)品:

  • 您的單位:

  • 您的姓名:

  • 聯(lián)系電話:

  • 常用郵箱:

  • 省份:

  • 詳細(xì)地址:

  • 補(bǔ)充說明:

  • 驗(yàn)證碼:

    請(qǐng)輸入計(jì)算結(jié)果(填寫阿拉伯?dāng)?shù)字),如:三加四=7

聯(lián)系我們

北京澳作生態(tài)儀器有限公司 公司地址:北京市海淀區(qū)路3號(hào)院6號(hào)樓1單元一層101A   技術(shù)支持:化工儀器網(wǎng)
  • 聯(lián)系人:邢韻
  • QQ:22563165
  • 公司傳真:010-82623152
  • 郵箱:market@aozuo.com.cn

掃一掃 更多精彩

微信二維碼

網(wǎng)站二維碼

国产在线观看高清视频_精品久久久久久中文字幕_日韩电影大全网站_午夜视频在线免费
欧美一级淫片播放口| 欧美国产欧美综合| 亚洲精选91| 久久国产乱子精品免费女 | 一本一本a久久| 亚洲精品国产精品国自产观看浪潮 | 亚洲视频1区| 亚洲日本中文| 亚洲黄色天堂| 亚洲电影自拍| 亚洲高清二区| 在线观看日韩av| 国内揄拍国内精品久久| 国产字幕视频一区二区| 国产视频在线观看一区| 国产欧美日韩精品在线| 国产欧美精品一区| 国产欧美在线视频| 国产三区二区一区久久| 国产在线观看一区| 激情亚洲网站| 亚洲欧洲视频| 亚洲毛片一区| 一区二区av| 亚洲午夜精品17c| 中国成人黄色视屏| 亚洲综合色激情五月| 羞羞答答国产精品www一本| 亚洲欧美一级二级三级| 欧美一区二区免费| 亚洲国产电影| 99国产一区二区三精品乱码| 亚洲视频你懂的| 亚洲永久免费精品| 欧美中文字幕不卡| 久久久久久网| 欧美成人高清视频| 欧美日本亚洲韩国国产| 欧美日韩一级大片网址| 欧美精品一区二区在线观看| 性18欧美另类| 亚洲系列中文字幕| 亚洲一级免费视频| 亚洲香蕉成视频在线观看| 99在线精品免费视频九九视| 99re66热这里只有精品4| 日韩一级在线| 中文日韩电影网站| 亚洲综合99| 中国成人在线视频| 99香蕉国产精品偷在线观看| 夜夜狂射影院欧美极品| 亚洲午夜精品一区二区| 亚洲欧美日韩爽爽影院| 西西人体一区二区| 久久精品99| 免费不卡在线观看av| 欧美大片在线看免费观看| 欧美激情91| 欧美视频精品在线| 国产精品永久免费观看| 国产一区二区三区久久久| 尤物网精品视频| 亚洲精品乱码久久久久久蜜桃91 | 欧美日韩在线视频一区| 国产精品久久久久三级| 国产精品日韩欧美一区二区| 国产亚洲人成a一在线v站 | 亚洲精品日韩综合观看成人91| 亚洲网站在线| 欧美一区二区三区的| 亚洲激情二区| 亚洲一区二区三区久久| 亚洲综合色激情五月| 久久精品视频亚洲| 免费人成网站在线观看欧美高清| 欧美精品在线极品| 国产精品国产三级国产专播精品人| 国产女精品视频网站免费| 国产农村妇女精品一二区| 欧美体内she精视频在线观看| 欧美日韩一区二区在线视频 | 亚洲国产精品va在线观看黑人| 99综合电影在线视频| 亚洲欧美日韩一区二区在线| 亚洲经典在线| 亚洲小视频在线观看| 久久国产福利国产秒拍| 欧美高清在线观看| 欧美日韩精品二区| 免费国产自线拍一欧美视频| 欧美激情欧美激情在线五月| 欧美日韩视频在线一区二区 | 精品二区视频| 亚洲人成欧美中文字幕| 亚洲网站在线播放| 欧美一区二区视频在线| 日韩亚洲欧美综合| 久久精品国产99国产精品澳门| 欧美经典一区二区三区| 国产视频欧美视频| 亚洲美女诱惑| 亚洲国产精品va在线看黑人| 亚洲午夜视频在线观看| 麻豆精品在线播放| 国产精品系列在线| 亚洲精品国产精品国自产观看浪潮| 亚洲欧美日韩精品久久亚洲区| 亚洲人午夜精品| 久久激情久久| 国产精品久久久久久影院8一贰佰 国产精品久久久久久影视 | 欧美在线观看一区二区三区| 久久综合伊人77777蜜臀| 国产精品免费观看视频| 亚洲激情小视频| 欧美亚洲在线| 亚洲女优在线| 欧美欧美全黄| 亚洲二区精品| 亚洲电影免费| 欧美中文在线免费| 国产精品亚洲网站| 一本色道88久久加勒比精品| 亚洲九九精品| 久久中文字幕导航| 国产亚洲精品bv在线观看| 亚洲一区二区三区在线看| 亚洲第一主播视频| 亚洲综合视频在线| 欧美成人久久| 91久久久久| 亚洲人久久久| 免费永久网站黄欧美| 国产自产精品| 欧美一区二区三区免费观看视频| 亚洲淫性视频| 欧美偷拍一区二区| 99riav国产精品| 一区二区av在线| 欧美国产1区2区| 亚洲国产cao| 亚洲日本中文字幕| 久久免费黄色| 国产日韩欧美成人| 午夜激情亚洲| 欧美一区二区在线观看| 国产欧美日韩一区二区三区| 亚洲欧美日韩国产综合在线| 香蕉成人伊视频在线观看| 欧美日本免费| 99re6这里只有精品视频在线观看| 一本色道88久久加勒比精品| 欧美久久九九| 亚洲精品久久久一区二区三区| 一区二区三区视频在线| 免费试看一区| 欧美精品91| 亚洲精品中文字幕女同| 亚洲婷婷综合色高清在线 | 久久久美女艺术照精彩视频福利播放 | 在线视频欧美日韩精品| 亚洲免费一在线| 国产精品一区二区在线观看不卡| 亚洲亚洲精品三区日韩精品在线视频| 亚洲影视在线播放| 国产伦精品一区二区三区免费迷| 9l国产精品久久久久麻豆| 亚洲一级黄色| 国产精品入口66mio| 欧美一级在线视频| 老司机精品视频一区二区三区| 国产一区二区三区精品久久久| 欧美一级大片在线免费观看| 葵司免费一区二区三区四区五区| 在线日本欧美| 一区二区三区日韩| 国产精品青草久久| 午夜欧美大尺度福利影院在线看| 久久免费少妇高潮久久精品99| 亚洲第一久久影院| 亚洲视频观看| 国产日韩欧美精品| 久久大逼视频| 欧美高清视频一区| 亚洲图片欧美一区| 久久全国免费视频| 亚洲日本va在线观看| 亚洲午夜一二三区视频| 国产一区二区三区在线观看视频| 亚洲激情女人| 国产精品高潮呻吟| 久久av在线| 欧美日韩久久久久久| 亚洲欧美日韩在线| 免费人成网站在线观看欧美高清| 日韩视频三区| 久久不射中文字幕| 亚洲精品免费一二三区| 午夜精品久久久久| 伊人激情综合|